Siyuan Chen

425 Hamerschlag Dr, Pittsburgh, PA 15213 • 314-203-6983 • siyuanch@andrew.cmu.edu

Research Interests

I'm a computer architect and a chip-building VLSI engineer with sub-28nm tapeout experiences. My research interests are in the design of domain-specific accelerators for emerging applications such as deep learning and robotics. I'm especially interested in designing flexible and future-proof accelerators that are ready for workloads of the future.

Education

Carnegie Mellon University, Pittsburgh, PA Expected Ph.D. in Electrical and Computer Engineering Advisor: Dr. Ken Mai Cumulative GPA: 4.00/4.00

Carnegie Mellon University, Pittsburgh, PA

M.S. in Electrical and Computer Engineering Advisor: Dr. Ken Mai Cumulative GPA: 4.00/4.00

Duke University, Durham, NC

B.S.E. Electrical and Computer Engineering, 2nd Major in Computer Science Advisor: Dr. Krishnendu Chakrabarty Cumulative GPA: 3.857/4.000

Research Experience

Academia

Research Assistant, Carnegie Mellon University, Pittsburgh, PA

Flexible and Low-Bandwidth Sparse Neural Network Accelerator in 22nm (Ongoing)

- Designed <u>a sparse neural network accelerator</u> that achieves <u>high hardware utilization</u> across different types of layers with <u>an improved channel-last dataflow</u>
- Implemented the accelerator's physical design in Intel 22nm FinFET process using Cadence Innovus
- <u>Reduced the off-chip data communication bandwidth</u> by employing a new network-level dataflow

Towards Specialized Hardware for Learning-based Visual Odometry [IROS'22]

- Proposed a heterogeneous System-on-Chip architecture to <u>accelerate deep-learning-based visual odometry on</u> <u>energy-constrained robots</u>
- Redesigned three state-of-the-art algorithms based on characteristics of the proposed hardware using <u>pruning</u>, <u>quantization and parameter tuning</u> to improve their energy efficiency
- Implemented all algorithms on Xilinx FPGAs using the Xilinx Deep-learning Processing Unit IP with an <u>improved</u> energy efficiency of 2.7x compared to NVIDIA's Jetson Nano embedded computer

High-Performance FFT Accelerator in 28nm [HPEC'22]

- Implemented the physical design of a Fast Fourier Transform (FFT) hardware accelerator in TSMC 28nm
- Achieved <u>1 GHz in silicon and 86x improvement on energy-delay product</u> compared to a similar academic FFT accelerator design by fully unrolling and deeply pipelining our proposed accelerator

Research Assistant, Duke University, Durham, NC

Detection of Rowhammer Attacks in FPGA-SoCs [TCAD'21, ETS'20]

- Developed a hardware monitor that listens to FPGA-SDRAM memory transactions to <u>detect Rowhammer</u> <u>attacks</u> in heterogeneous FPGA System-on-Chips
- Verified resilience of solution against different variants of Rowhammer attacks on real hardware while consuming only 1% of FPGA resources

October 2020 - Present

May 2022 – August 2025

August 2020 - May 2022

August 2017 – May 2020

October 2020 Dresser

August 2018 – July 2020

Industry

Research Intern, IBM Research, Yorktown Heights, NY

Supervisor: Dr. Gi-Joon Nam

BISTLock, Efficient Logic Locking with BIST [ITC'21, ITC'20]

- Proposed a protection method <u>against semiconductor IP piracy</u> that locks an IC in test mode until a correct key is provided to the build-in self-test (BIST) module
- Reduced hardware overhead to below 1% while achieving the same level of security as the state of the art

Teaching Assistant

CMU	18-726	Projects in Integrated Circuit Design: First Silicon	Fall 2022
CMU	18-725	Advanced Digital Integrated Circuit Design	Spring 2022
Duke	ECE 550	Fundamentals of Computer Systems and Engineering	Fall 2019
Duke	ECE 350	Digital Systems	Spring 2019, Fall 2019, Spring 2020

Publications

Journal Papers

[1] Rana Elnaggar, **Siyuan Chen**, Peilin Song, Krishnendu Chakrabarty, "Securing SoCs with FPGAs Against Rowhammer Attacks", *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)*, August 2021.

[2] Yuanyong Luo, Yuxuan Wang, Yajun Ha, Zhongfeng Wang, **Siyuan Chen** and Hongbing Pan, "Generalized Hyperbolic CORDIC and Its Logarithmic and Exponential Computation With Arbitrary Fixed Base", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems (TVLSI)*, September 2019.

Conference Papers

[1] **Siyuan Chen** and Ken Mai, "Towards Specialized Hardware for Learning-based Visual Odometry on the Edge", accepted at *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2022.

[2] Larry Tang, **Siyuan Chen**, Keshav Harisrikanth, Guanglin Xu, Ken Mai and Franz Franchetti, "A High Throughput Hardware Accelerator for FFTW Codelets: A First Look", accepted *at IEEE High Performance Extreme Computing* (*HPEC*), 2022.

[3] Jonti Talukdar, **Siyuan Chen**, Amitabh Das, Sohrab Aftabjahani, Peilin Song and Krishnendu Chakrabarty, "A BIST-based Dynamic Obfuscation Scheme for Resilience against Removal and Oracle-guided Attacks", *IEEE International Test Conference (ITC)*, October 2021.

[4] **Siyuan Chen**, Jinwook Jung, Peilin Song, Krishnendu Chakrabarty and Gi-Joon Nam, "BISTLock: Efficient IP Piracy Protection using BIST", *IEEE International Test Conference (ITC)*, November 2020.

[5] Rana Elnaggar, **Siyuan Chen**, Peilin Song, Krishnendu Chakrabarty, "Detection of Rowhammer Attacks in SoCs with FPGAs", *IEEE European Test Symposium (ETS)*, May 2020.

Awards

Apple Ph.D Fellowship	Apple	2023		
Dean's Fellowship	CMU	2020		
Charles Ernest Seager Memorial Award	Duke	2020		
(recognizes outstanding undergraduate research)				

Technical Skills

Hardware/Programming Languages: Verilog, Chisel, Python, Tcl, C, Java, MATLAB EDA Tools: Cadence {Genus, Innovus, Voltus, Virtuoso, Liberate, NCSim}, Mentor Calibre, Xilinx Vivado